Math 32B: Vector Potentials, $H^{2}\left(S^{2} \vee S^{2}\right) \rightarrow H^{2}\left(S^{2}\right)$

Michael Andrews
UCLA Mathematics Department

June 11, 2018

1. Consider the following vector field with domain $\mathbb{R}^{3}-\{(0,0,0)\}$:

$$
\mathbf{F}(x, y, z)=\frac{(x, y, z)}{x^{2}+y^{2}+z^{2}} .
$$

(a) What is $\nabla \cdot \mathbf{F}$?
(b) Let S be the unit sphere $x^{2}+y^{2}+z^{2}=1$ with outward pointing normal. Calculate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$.
(c) Does \mathbf{F} have a vector potential defined on $\mathbb{R}^{3}-\{(0,0,0)\}$?
(d) How would you justify your answer to (c) as quickly as possible?
2. Consider the following vector field with domain $\mathbb{R}^{3}-\{(0,0,0)\}$:

$$
\mathbf{F}(x, y, z)=\frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} .
$$

(a) What is $\nabla \cdot \mathbf{F}$?
(b) Let S be the unit sphere $x^{2}+y^{2}+z^{2}=1$ with outward pointing normal. Calculate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$.
(c) Does \mathbf{F} have a vector potential defined on $\mathbb{R}^{3}-\{(0,0,0)\}$?
(d) How would you justify your answer to (c) as quickly as possible?
3. Consider the following vector field with domain $\mathbb{R}^{3}-\{(0,0,0)\}$:

$$
\mathbf{F}(x, y, z)=\frac{\left(x\left(z^{2}-y^{2}\right), y\left(x^{2}-z^{2}\right), z\left(y^{2}-x^{2}\right)\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} .
$$

(a) What is $\nabla \cdot \mathbf{F}$?
(b) Let S be the unit sphere $x^{2}+y^{2}+z^{2}=1$ with outward pointing normal. Calculate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$.
(c) Does \mathbf{F} have a vector potential defined on $\mathbb{R}^{3}-\{(0,0,0)\}$?
(d) How would you justify your answer to (c) as quickly as possible?
4. Let $\mathbf{F}_{1}(x, y, z)=\frac{(x,(y+1), z)}{\left(x^{2}+(y+1)^{2}+z^{2}\right)^{\frac{3}{2}}}$ and $\mathbf{F}_{2}(x, y, z)=\frac{(x,(y-1), z)}{\left(x^{2}+(y-1)^{2}+z^{2}\right)^{\frac{3}{2}}}$.

Their domains are $\mathbb{R}^{3}-\{(0,-1,0)\}$ and $\mathbb{R}^{3}-\{(0,1,0)\}$, respectively. Let S_{1} be the unit sphere $x^{2}+(y+1)^{2}+z^{2}=1$ with outward pointing normal. Let S_{2} be the unit sphere $x^{2}+(y-1)^{2}+z^{2}=1$ with outward pointing normal. Let S_{3} be the sphere of radius $3, x^{2}+y^{2}+z^{2}=9$, with outward pointing normal.
(a) What are $\nabla \cdot \mathbf{F}_{1}$ and $\nabla \cdot \mathbf{F}_{2}$?
(b) What are $\iint_{S_{1}} \mathbf{F}_{1} \cdot d \mathbf{S}, \iint_{S_{2}} \mathbf{F}_{2} \cdot d \mathbf{S}, \iint_{S_{1}} \mathbf{F}_{2} \cdot d \mathbf{S}, \iint_{S_{2}} \mathbf{F}_{1} \cdot d \mathbf{S}$?
(c) What are $\iint_{S_{3}} \mathbf{F}_{1} \cdot d \mathbf{S}$ and $\iint_{S_{3}} \mathbf{F}_{2} \cdot d \mathbf{S}$?

Hint: use local surface-independence.
(d) Consider $\mathbf{F}=\mathbf{F}_{1}-\mathbf{F}_{2}$ with domain $\mathbb{R}^{3}-(\{(0,-1,0),(0,1,0)\}$. What is $\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}$?
Does \mathbf{F} have a vector potential on $\mathbb{R}^{3}-(\{(0,-1,0),(0,1,0)\}$?
(e) Consider $\mathbf{G}=\mathbf{F}_{1}-\mathbf{F}_{2}$ with domain $\mathbb{R}^{3}-\{0\} \times[-1,1] \times\{0\}$.

What is $\iint_{S_{3}} \mathbf{G} \cdot d \mathbf{S}$?
Does \mathbf{G} have a vector potential on $\mathbb{R}^{3}-\{0\} \times[-1,1] \times\{0\}$?

Solutions

1. (a) $\frac{1}{x^{2}+y^{2}+z^{2}}$.
(b) 4π.
(c) No.
(d) Part (b) shows it has a non-zero flux.
2. (a) 0 .
(b) 4π.
(c) No.
(d) Part (b) shows it has a non-zero flux.
3. (a) 0 .
(b) 0 .
(c) Yes.
(d) It has divergence 0 and all potentially non-zero fluxes are 0 .

Also, $\mathbf{A}=\frac{(y z, z x, x y)}{\sqrt{x^{2}+y^{2}+z^{2}}}$ is a vector potential for \mathbf{F}.
I don't expect you to be able to find the vector potential.
4. (a) 0,0 .
(b) $4 \pi, 4 \pi, 0,0$.
(c) $4 \pi, 4 \pi$.
(d) 4π. No: it has a non-zero flux.
(e) 0 . Yes: it has divergence 0 and all potentially non-zero fluxes are 0 ; also, we have a vector potential for \mathbf{F} defined by $\mathbf{A}(x, y, z)=$ $\frac{(y+1)(-z, 0, x)}{\left(x^{2}+z^{2}\right) \sqrt{x^{2}+(y+1)^{2}+z^{2}}}-\frac{(y-1)(-z, 0, x)}{\left(x^{2}+z^{2}\right) \sqrt{x^{2}+(y-1)^{2}+z^{2}}}$ when $x^{2}+z^{2} \neq 0$, and $\mathbf{A}(0, y, 0)=0$ when $|y|>1$.
I don't expect you to be able to find the vector potential.

